Education for Filmmakers
Language
The CineD Channels
Info
New to CineD?
You are logged in as
We will send you notifications in your browser, every time a new article is published in this category.
You can change which notifications you are subscribed to in your notification settings.
Here are some useful facts and figures that may shed new light on your understanding of illumination.
Light is one of those mysterious things we all know, but rarely stop to think about in much detail. More than ever we’re concerned with low light performance, and creative cinematographers are becoming more flexible than ever when it comes to how they use light.
Emmanuel “Chivo” Lubezki recently did the seemingly unthinkable for a Hollywood feature, shooting The Revenant using only available light. It wasn’t his first time either, and with continual improvements in sensitivity, we’ll see an increase in the number of high-profile films executed by smaller crews shooting only in the natural light that is available to them.
Of course for documentary and news, as well as most of us without Hollywood-sized crews and budgets, we’ve been shooting in available light for a long time, and will continue to do so.
With that said, here are a few basic concepts that should be at the forefront of what we do.
The Lumen is a measure of the total quantity of visible light emitted by a source (luminous flux).
Lux is a measure of illuminated area.
The difference between the units lumen and lux is that the lux takes into account the area over which the luminous flux is spread. A flux of 1000 lumens, concentrated into an area of one square metre, lights up that square metre with an illuminance of 1000 lux.
1 Lux = 1 Lumen per Square Meter.
Remember also that light intensity falls off inversely to the square root of the distance from the source.
So, just how bright is 1 lux?
Typical lux values of surfaces illuminated by:
0.0001 lux – Moonless, overcast night sky.0.002 lux – Moonless clear night sky with airglow.0.27–1.0 lux – Full moon on a clear night.3.4 lux – Dark limit of civil twilight under a clear sky.50 lux – Family living room lights.80 lux – Office building hallway/toilet lighting.100 lux – Very dark overcast day.320–500 lux – Office lighting.400 lux – Sunrise or sunset on a clear day.1000 lux – Overcast day; typical TV studio lighting.10000–25000 lux – Full daylight (not direct sun).32000–100000 lux – Direct sunlight.
What does this mean in terms of exposure?
Of course, it depends on frame rate, shutter speed and ISO (or EI).
Exposure Value (EV) is a scale representing the combination of aperture f/stop and shutter speed. Any combination of aperture and shutter speed that results in the same EV value will result in the same exposure.
EV = log2(N²/t)
Where:
N is f/stop number
t is shutter speed
Here’s an example:
Let’s say we know we are planning the shoot to be interior nighttime. It’s a living room, and we will be shooting at 24fps with a standard 180-degree shutter (or 1/48th sec) and we want to maintain a nice, shallow DoF with an f/stop of f/2.8. So we know our general illuminance level is likely to be somewhere around 50 lux, that’s how much light is likely to be falling on our subject.
So lets plug that into the equation to arrive at an EV value.
N is 2.8
t is 1/48 or 0.0208
EV = log2(2.8²/0.0208)
EV = log2(7.84/0.0208)
EV = log2(376.92)
EV = 8.558
So we have an EV value of 8.5
Now we can look this up on a EV/Lux conversion chart such as this one by Sekonic. The chart gives us corresponding illuminance values (lux) for EV values at 100ISO.
The chart gives us an illuminance value of 900 lux at 100 ISO for a correct exposure at f/2.8 with 1/48th sec shutter speed. From this point it’s easy, we won’t have 900 lux, we’ll only have 50 lux but we won’t be exposing at 100 ISO either. So let’s adjust this figure for ISO. Every time we double the ISO, we double sensitivity, and so our illuminance requirement is halved.
ISO 100 @ EV 8.5 = 900 luxISO 200 @ EV 8.5 = 450 luxISO 400 @ EV 8.5 = 225 luxISO 800 @ EV 8.5 = 112.5 luxISO 1600 @ EV 8.5 = 56.25 lux
So, if we want to maintain f/2.8 aperture, we need to expose for EI 1600. If we know we don’t want to exceed 800, we can open our aperture up to f/2.0 (one stop) and we’ll be properly exposed for a typical nighttime living room interior—using only the available natural light.
Dynamic range (latitude) is all about contrast ratios. We’re so used to quoting how many stops of dynamic range our cameras have, but rarely is that put into some sort of real world context where it takes on some relatable meaning.
Dynamic range, or latitude, is measured in stops. Every stop is a doubling of light intensity.
0 Stop 1:11 Stop 1:22 Stop 1:43 Stop 1:84 Stop 1:165 Stop 1:326 Stop 1:647 Stop 1:1288 Stop 1:2569 Stop 1:51210 Stop 1:102411 Stop 1:204812 Stop 1:409613 Stop 1:819214 Stop 1:16,38415 Stop 1:32,76816 Stop 1:65,53617 Stop 1:131,07218 Stop 1:262,14419 Stop 1:524,28820 Stop 1:1,048,57621 Stop 1:2,097,15222 Stop 1:4,194,30423 Stop 1:8,388,60824 Stop 1:16,777,21625 Stop 1:33,554,43226 Stop 1:67,108,86427 Stop 1:134,217,72828 Stop 1:268,435,45629 Stop 1:536,870,91230 Stop 1:1,073,741,824
In theory, the human eye can adjust for vision in illumination levels of between 0.0000001 lux (10^-6) and 1,000,000 lux (10^6) but the useable range within that is much less. Practically, we can consider a maximum dynamic contrast ratio of 50 million to 1 (30 stops), from moonless overcast midnight black to the brightest sunlit white, but that contrast never occurs in nature—and we certainly aren’t able to perceive that entire range at once.
The maximum ratio in a naturally occurring scene is closer to 1 million to 1 (around 20 stops), but even this is extreme and rarely encountered.
Our vision adjusts to light levels constantly and our static contrast ratio, which is the range we can see at once within a static scene, is closer to 1,000 to 1 (10 stops).
You can calculate some likely real-world contrast ratios by finding the difference in illuminance levels from the first list and matching that up with the contrast ratios in stops. For example, our night time living room illuminance of 50 lux will be our general maximum level in that scene, the difference between this and the darkest shadow (under a couch for instance) can be no more than 50 lux—though it’s likely to be a fair bit less due to ambient light bouncing around—so our total range in that situation may be around 5 stops maximum.
If we are outside, under sunlight, the range could be as high as 15-16 stops between the brightest ping of specular highlight from the sun and true black. If there is shadow detail that is dark although again, due to ambient light levels, that are well above true black in daylight, then the actual range in the scene may be less.
Hopefully, these numbers have given you a bit of a reference to judge real world light levels and contrast ratios and some tools to even run some calculations yourself before you ever set up the camera—even without a light meter!
Δ
Stay current with regular CineD updates about news, reviews, how-to’s and more.
You can unsubscribe at any time via an unsubscribe link included in every newsletter. For further details, see our Privacy Policy
Want regular CineD updates about news, reviews, how-to’s and more?Sign up to our newsletter and we will give you just that.
You can unsubscribe at any time via an unsubscribe link included in every newsletter. The data provided and the newsletter opening statistics will be stored on a personal data basis until you unsubscribe. For further details, see our Privacy Policy
Richard Lackey is a cinema camera and workflow specialist, colorist (CSI member), producer & writer with 10+ years of industry experience. Richard has a passion for cinema technology & beautiful imagery.